2 Basis und Dimension

Definition 2.1. Es sei V ein VR iiber k. M sei eine beliebige Menge von Vektoren aus V/, also
M C V. M heisst erzeugend, wenn jeder Vektor v € V als Linearkombination von endlich vielen
Vektoren aus M geschrieben werden kann.

Ist M erzeugend, so gibt es also zu jedem Vektor V € V Vektoren 3 € M und Zahlen A\; € k,
sodass gilt

V=MA-a1+tX-a&+ ...+ Xy a3p

M enthalt dann geniigend viele Vektoren, um jeden andern Vektor daraus zu bilden. Endliche
Summen von Vielfachen von Vektoren aus M ergeben schon ganz V.

Definition 2.2. Es sei V ein VR liber k. M sei eine beliebige Menge von Vektoren aus V, also
M C V. M heisst linear unabhangig, wenn kein Vektor aus M als (endliche) Linearkombination der
tibrigen Vektoren von M geschrieben werden kann.

Ist M linear unabhangig, so kann man keinen Vektor aus M entfernen, ohne dass die Menge der
Vektoren, die mit Linearkombinationen aus M gebildet werden kann, kleiner wird. In M ist kein
Vektor ,uberfliissig’.

Definition 2.3. Es sei V' ein VR iiber k. Eine Menge M = {é&;,é, ..., €, } von Vektoren aus V
heisst eine Basis von V, wenn M sowohl erzeugend als auch linear unabhangig ist.

Basen enthalten also geniigend Vektoren, um alle anderen daraus als Linearkombination zu erzeu-
gen, aber sie enthalten auch keinen Vektor zuviel. Basen sind somit minimale erzeugende Mengen
oder maximale linear unabhangige Mengen. Es gilt noch zu zeigen, dass jeder VR Uberhaupt eine
Basis besitzt!

Fir diesen Beweis brauchen wir noch alternative Formulierungen daflir, dass M C V' linear unab-
hangig ist:

Satz 2.4. Es sei V ein Vektorraum iiber k, und M = { &1, 6, ..., €, } C V. Dann sind folgende 2
Aussagen aquivalent:

(A) M ist linear unabhangig
(B) [Mi-&+X-&+... X8 =0] = X\ =0fiiralle/

Gleichbedeutend ist die Behauptung, dass (—.A) und (= B) dquivalent sind:
(= A) M ist linear abhangig
(=B) [T Ao, . ., An € k] [N+ & =0 und mindestens ein \; # 0]

B besagt, dass es nur die triviale Linearkombination gibt fiir den Nullvektor, =B bedeutet, dass es
eine nichttriviale Linearkombination fiir den Nullvektor gibt.

Beweis. Wir zeigen (- A) <— (= B).

i) Seialso —A, d.h. man kann einen Vektor aus M als Linearkombination der iibrigen schreiben:
OBdA

El=MX-E+A3-8+ ...+ X, 6E,



Dann ist
O=—1-8+X-E+X3-8G+...+ Xy &,

und wir haben =B, da der Koeffizient von &; verschieden ist von Null.

i) Ganz ahnlich geht die Umkehrung: Es gelte also —B: Dann gilt
AM-BL+X-&+...+X,-8=0
und mindestens ein A; ist dabei nicht null. OBdA sei A1 # O:

>\1'§1:—>\2'é‘2—>\3’é'3—...—>\n‘é’n und ()\1750!)
G =—32 8- -&—...—3-8&, also ~A
Od
Nun konnen wir das Wesen einer Basis von V' noch scharfer umreissen:
Lemma 2.5. Sei V ein VR iiber k, und es sei M = { &, &,...,&,} C V. Dann sind die folgenden

zwei Aussagen aquivalent:
i) M ist eine Basis von V

i) Zu jedem Vektor von V gibt es genau eine Darstellung als Linearkombination von Vektoren
aus M

Ist M eine solche Basis, dann existiert zu jedem Vektor V genau ein n-Tupel von Zahlen A; € k
sodass

V=X - +X-&+...+X - 8&

Beweis

i) = ii) Wenn M eine Basis von V ist, dann ist M erzeugend und es exstiert zu jedem Vektor
vV € V eine Linearkombination mit V.= A1 - & +Xo- & + ... + A, - €,. Gabe es eine
andere: V=1 -6 + Up - & + ...+ Wy €,, wobei mindestens ein \; # u;, so konnten
wir die beiden Zeilen subtrahieren und wir hatten eine nicht-triviale Linearkombination
fir den Nullvektor! Dies ist aber nicht moglich, wenn M linear unabhangig ist.

i) = i) Es lasse sich also jeder Vektor aus V' auf genau eine Art als Linearkombination der €
schreiben. Dann ist M sicher erzeugend, und die Darstellung

0=0-6,+0-8+...40-8,
ist die einzige fiir den Nullvektor. M muss also nach Satz 2.4 auch linear unabhangig

sein.
O



Lemma 2.6. Es seien A = {31,3,...,an} und B = {51,52, .. .,En} zwei Basen des VR V.
Dann konnen wir 37 in B hineinschmuggeln und damit einen der Vektoren b; ersetzen, und die
entstandene Menge C ist wieder eine Basis von V.

Konnen wir z. B. den Vektor by € B ersetzen, dann ist C = {a1, by, b3, ..., Bn} wieder eine Basis
von V.

Beweis

Da B eine Basis ist von V/, gibt es eine Darstellung
=X -b+Xo-Bo+...+ Ay by,
und wegen 31 # 0 muss mindestens ein \; verschieden sein von null. Es sei also oBdA \; # 0:
Dann ist
A b ==& +Xo-bo+A3-b3+...4+ Ny~ by
und dann, wegen \; # 0,
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b1 wird also von C = { &, by,
erzeugend.

Da B auch linear unabhangig ist, sind die Koeffizienten A; in der Darstellung von &) eindeutig
bestimmt. Wir zeigen nun, dass auch die Darstellung von V iiber C eindeutig bestimmt ist, also
dass C auch linear unabhangig ist:

Sei V € V beliebig: Dann gibt es eindeutig bestimmte Koeffizienten w1, uo, . . ., Wn mit
V=1 b1 +ps-by+ ...+ pin by,
also
Vzul-(ﬁ'51—%-52—...—%-Bn)+uz'52+---+un‘5n
=5 a1+ Mz—%)'52+---+(un—“%‘")'5n

In dieser Darstellung von V sind alle Koeffizienten eindeutig bestimmt!

Nun konnen wir die Friichte unserer Kleinarbeit pfliicken:

Satz 2.7. Esseien A={a1,a,...,am} und B = {51, bo, ..., 5,,} zwei Basen des VR V. Dann
gilt n=m.

In jedem VR mit einer endlichen Basis ist die Anzahl der Basisvektoren in einer Basis eine Konstante.

Beweis

Ware z.B. n > m: Wiederholte Anwendung von Lemma 2.6 wiirde schliesslich eine Basis (!) D
ergeben mit

D:{51,&72,...,5m,5m+1,5m+2,...,5n}

im Widerspruch dazu, dass schon A= {31, a>,...,am } eine Basis ist!



Nun fehlt uns nur noch
Lemma 2.8. Jeder endlich erzeugte VR besitzt eine Basis.

Beweis

Essei M ={¢é1,6,..., €, } eine erzeugende Menge. Jeder Vektor von V ldsst sich also als Line-
arkombination von Vektoren aus M schreiben:

V=M -E+X-&+...+ Ay &
Ist diese Darstellung nicht eindeutig, so gibt es noch eine andere:
V=11 € + U2 &+ ...+ Uy &,
wobei mindestens fiir ein i \; # ;. Es sei z. B. Ao # uo: Dann ist
0= —m)-&+Pa—m) &+...4+N\y—pn): &,
(B2 —=A2) &=\ —p1) & +A3—u3) &+...+xA—un) &
und wegen Aa # o

SN e S A3—U3 | = Aa—ps | = An—ln | =
€ = H2—A2 e+ H2—A2 €+ H2—A2 €at...+ Uo—MXo €n

und wir konnen & weglassen, M \ { & } ist immer noch erzeugend! Diesen Prozess kénnen wir
solange wiederholen, als die Menge M noch nicht linear unabhangig ist, M bleibt dabei immer
erzeugend. Nach endlich vielen Schritten landen wir bei einer Menge M, die erzeugend und linear
unabhangig ist.

O

Damit ist die folgende wichtige Definition moglich:

Definition 2.9. Sei V ein VR uber k. Die Dimension von V ist die Anzahl der Vektoren, die
irgendeine der Basen von V enthilt.

Nach Lemma 2.8 besitzt jeder endlich erzeugte VR eine Basis, bestehend aus endlich vielen Vek-
toren, und nach Lemma 2.7 ist die Zahl dieser Vektoren eindeutig bestimmt.

Aufgaben

1. Geben sie einen VR V an, der die Dimension 2 hat.

Wie 1., aber fiir dim(V) = 1.

Wie 1., aber fiir dim(V) = 0!

Welche Dimension hat € als VR uiber R? Wie sieht eine Basis von €& immer aus?
Wie 4., aber fir R als VR Uber R.

Geben Sie zwei verschiedene Basen an fiir R*.

N o o A w DN

Geben Sie eine Basis an fiir M (k).



8. Geben Sie eine Basis an fiir P3(R).
9. (schwierig) Geben Sie eine Basis an fiir MQ3(Z7).
10. (schwierig) Geben Sie eine Basis an fiir SMQ3(Z7).

11. Wie kdnnen Sie priifen, ob 3 Vektoren in R3 linear unabhingig sind?

Wir konnen die x-y-Ebene des Raumes R mit der euklidischen Ebene & identifizieren. Dann ist &
ein zweidimensionaler Unterraum des dreidimensionalen VR R.

Diese Auffassung fiihrt zu den folgenden Definitionen und Lemmatas:

Definition 2.10. Es sei V' ein VR iiber k. M sei eine (kleine) Teilmenge von V.

Die lineare Hiille vom M ist die Menge aller Vektoren aus V/, die sich als Linearkombinationen von
(endlich vielen) Vektoren aus M schreiben lassen.

Definition 2.11. Es sei V ein VR iiber k, und U sei eine Teilmenge von V. U heisst ein Unterraum
von V, wenn gilt

) [Va,veU]lag+vVeU]
i) [VZieU][VAek][\-Te U]

Vielfache und Summen von Vektoren aus U missen wieder in U liegen, oder, anders gesagt, die
lineare Hiille von U muss U selber sein.

Es ist kaum tberraschend, dass die folgenden Lemmata gelten:

Lemma 2.12. Es sei M eine Teilmenge des VR V liber k. Dann ist die lineare Hiille von M ein
Unterraum von V.

Lemma 2.13. Es sei U ein Unterraum des VR V. Dann gilt
dim(U) < dim(V), und zudem
dim(U) =dim(V) = U=V

Lemma 2.14. Es sei V ein VR lber k, und zudem seien U und W Unterraume von V. Dann ist
auch UN W ein Unterraum von V.

Die Beweise von Lemma 2.12, Lemma 2.13 und Lemma 2.14 sind lhnen als Ubungsaufgaben
tberlassen.

Zum Abschluss folgt noch eine Reihe von Beispielen und Aufgaben.



Beispiele und Aufgaben

10.
11.
12,
13.
14.
15.
16.
17.
18.

19.

1 0
0o].(1 erzeugt einen 2d-Unterraum von R3.
0 0

Beniitzt man die iiblichen Basisvektoren, so handelt es sich um die x-y-Ebene.

Es sei V ein VR iiber k. Zudem sei V € V mit v # 0. Dann bilden alle Vielfachen von ¥ einen
1d-Unterraum. So was nennen wir allgemein eine Gerade durch den Nullpunkt.

100
Beispiel: { A- [0 0 1| |X€Zs p € MQ3(Zs)
010

. Wir konnen & als 2d-Unterraum von R auffassen.

. Wir koénnen € auch als 1d-VR iiber C auffassen (die Gauss'sche Ebene).

Die Fibonacci-Folgen bilden einen Unterraum im VR aller Zahlfolgen. Welches ist seine Di-
mension? Geben Sie eine Basis an.

Die Polynomfunktionen Ps(k) bilden einen Unterraum im VR aller differentierbaren Funktio-
nen auf [a, b].

. P3(k) ist ein Unterraum von Ps(k). Welches ist librigens die Dimension von P,(k)?

. Wir konnen die folgende Kette von Unterraumen bilden:

kt C k3 C M33(k) c M3*5(k) C ...

. Auch die folgenden Teilmengen sind Unterraume:

SMQa(k) € MQu(k) C M*¥4(k)
Bestimmen Sie die Dimension von MQ3(k).
Bestimmen Sie die Dimension von MQ4(k).
Was gilt wohl allgemein fiir die Dimension von MQ,(k)?
(knifflig) Bestimmen Sie die Dimension von SMQ3(k) und geben Sie eine Basis an.
(knifflig) Bestimmen Sie die Dimension von SMQ4 (k) und geben Sie eine Basis an.
Was gilt wohl allgemein fiir die Dimension von SMQ,(k)?
Erweitern Sie Ihre Basis von SMQs(k) zu einer Basis von MQz(k).
(schwierig) Erweitern Sie lhre Basis von SMQ4(k) zu einer Basis von MQa (k).

Fiir ungerade n ist es leicht, Vektoren zu finden, die eine Basis von SMQ, (k) zu einer Basis
von MQ,(k) erweitern.

Fiir gerade n ist es viel schwieriger, eine Basis von SMQ,,(k) zu einer Basis von MQ, (k) zu
erweitern!



20. Wenn Sie 12. und 15. gelost haben, konnen Sie sicher einen Unterraum U angeben, fiir den
gilt:
SMQq4 (k) C U C MQg4(k) mit

dim(SMQ,(k)) < dim(U) < dim(MQ,(k))
21. Warum lasst sich der Prozess von 20. fiir alle Kantenlangen n > 3 durchfiihren?

22. Alle Zufallsvariablen X auf einem Wahrscheinlichkeitsraum (€, p) bilden einen VR iiber R.
Sie lassen sich addieren und mit reellen Zahlen multiplizieren, und es gelten die tiblichen
Rechengesetze.
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