
2 Basis und Dimension

Definition 2.1. Es sei V ein VR über k . M sei eine beliebige Menge von Vektoren aus V , also
M ⊂ V . M heisst erzeugend, wenn jeder Vektor v⃗ ∈ V als Linearkombination von endlich vielen
Vektoren aus M geschrieben werden kann.

Ist M erzeugend, so gibt es also zu jedem Vektor v⃗ ∈ V Vektoren a⃗i ∈ M und Zahlen λi ∈ k ,
sodass gilt

v⃗ = λ1 · a⃗1 + λ2 · a⃗2 + . . .+ λn · a⃗n
M enthält dann genügend viele Vektoren, um jeden andern Vektor daraus zu bilden. Endliche
Summen von Vielfachen von Vektoren aus M ergeben schon ganz V .

Definition 2.2. Es sei V ein VR über k . M sei eine beliebige Menge von Vektoren aus V , also
M ⊂ V . M heisst linear unabhängig, wenn kein Vektor aus M als (endliche) Linearkombination der
übrigen Vektoren von M geschrieben werden kann.

Ist M linear unabhängig, so kann man keinen Vektor aus M entfernen, ohne dass die Menge der
Vektoren, die mit Linearkombinationen aus M gebildet werden kann, kleiner wird. In M ist kein
Vektor ‚überflüssig‘.

Definition 2.3. Es sei V ein VR über k . Eine Menge M = { e⃗1, e⃗2, . . . , e⃗n } von Vektoren aus V
heisst eine Basis von V , wenn M sowohl erzeugend als auch linear unabhängig ist.

Basen enthalten also genügend Vektoren, um alle anderen daraus als Linearkombination zu erzeu-
gen, aber sie enthalten auch keinen Vektor zuviel. Basen sind somit minimale erzeugende Mengen
oder maximale linear unabhängige Mengen. Es gilt noch zu zeigen, dass jeder VR überhaupt eine
Basis besitzt!

Für diesen Beweis brauchen wir noch alternative Formulierungen dafür, dass M ⊂ V linear unab-
hängig ist:

Satz 2.4. Es sei V ein Vektorraum über k , und M = { e⃗1, e⃗2, . . . , e⃗n } ⊂ V . Dann sind folgende 2
Aussagen äquivalent:

(A) M ist linear unabhängig

(B) [λ1 · e⃗1 + λ2 · e⃗2 + . . . λn · e⃗n = 0⃗ ] =⇒ λi = 0 für alle i

Gleichbedeutend ist die Behauptung, dass (¬A) und (¬B) äquivalent sind:

(¬A) M ist linear abhängig

(¬B) [ ∃λ1, λ2, . . . , λn ∈ k ]
[∑
λi · a⃗i = 0⃗ und mindestens ein λi ̸= 0

]
B besagt, dass es nur die triviale Linearkombination gibt für den Nullvektor, ¬B bedeutet, dass es
eine nichttriviale Linearkombination für den Nullvektor gibt.

Beweis. Wir zeigen (¬A) ⇐⇒ (¬B).

i) Sei also ¬A, d. h. man kann einen Vektor ausM als Linearkombination der übrigen schreiben:
OBdA

e⃗1 = λ2 · e⃗2 + λ3 · e⃗3 + . . .+ λn · e⃗n
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Dann ist

0⃗ = −1 · e⃗1 + λ2 · e⃗2 + λ3 · e⃗3 + . . .+ λn · e⃗n,

und wir haben ¬B, da der Koeffizient von e⃗1 verschieden ist von Null.

ii) Ganz ähnlich geht die Umkehrung: Es gelte also ¬B: Dann gilt

λ1 · e⃗1 + λ2 · e⃗2 + . . .+ λn · e⃗n = 0⃗

und mindestens ein λi ist dabei nicht null. OBdA sei λ1 ̸= 0:

λ1 · e⃗1 = −λ2 · e⃗2 − λ3 · e⃗3 − . . .− λn · e⃗n und (λ1 ̸= 0 !)

e⃗1 = −λ2λ1 · e⃗2 −
λ3
λ1
· e⃗3 − . . .− λnλ1 · e⃗n, also ¬A
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Nun können wir das Wesen einer Basis von V noch schärfer umreissen:

Lemma 2.5. Sei V ein VR über k , und es sei M = { e⃗1, e⃗2, . . . , e⃗n } ⊂ V . Dann sind die folgenden
zwei Aussagen äquivalent:

i) M ist eine Basis von V

ii) Zu jedem Vektor von V gibt es genau eine Darstellung als Linearkombination von Vektoren
aus M

Ist M eine solche Basis, dann existiert zu jedem Vektor v⃗ genau ein n-Tupel von Zahlen λi ∈ k
sodass

v⃗ = λ1 · e⃗1 + λ2 · e⃗2 + . . .+ λn · e⃗n

Beweis

i) =⇒ ii) Wenn M eine Basis von V ist, dann ist M erzeugend und es exstiert zu jedem Vektor
v⃗ ∈ V eine Linearkombination mit v⃗ = λ1 · e⃗1 + λ2 · e⃗2 + . . . + λn · e⃗n. Gäbe es eine
andere: v⃗ = µ1 · e⃗1 + µ2 · e⃗2 + . . .+ µn · e⃗n, wobei mindestens ein λi ̸= µi , so könnten
wir die beiden Zeilen subtrahieren und wir hätten eine nicht-triviale Linearkombination
für den Nullvektor! Dies ist aber nicht möglich, wenn M linear unabhängig ist.

ii) =⇒ i) Es lasse sich also jeder Vektor aus V auf genau eine Art als Linearkombination der e⃗i
schreiben. Dann ist M sicher erzeugend, und die Darstellung

0⃗ = 0 · e⃗1 + 0 · e⃗2 + . . .+ 0 · e⃗n
ist die einzige für den Nullvektor. M muss also nach Satz 2.4 auch linear unabhängig
sein.

2

2



Lemma 2.6. Es seien A = { a⃗1, a⃗2, . . . , a⃗m } und B = { b⃗1, b⃗2, . . . , b⃗n } zwei Basen des VR V .
Dann können wir a⃗1 in B hineinschmuggeln und damit einen der Vektoren b⃗i ersetzen, und die
entstandene Menge C ist wieder eine Basis von V .

Können wir z. B. den Vektor b⃗1 ∈ B ersetzen, dann ist C = { a⃗1, b⃗2, b⃗3, . . . , b⃗n } wieder eine Basis
von V .

Beweis

Da B eine Basis ist von V , gibt es eine Darstellung

a⃗1 = λ1 · b⃗1 + λ2 · b⃗2 + . . .+ λn · b⃗n,

und wegen a⃗1 ̸= 0⃗ muss mindestens ein λi verschieden sein von null. Es sei also oBdA λ1 ̸= 0:

Dann ist

−λ1 · b⃗1 = −a⃗1 + λ2 · b⃗2 + λ3 · b⃗3 + . . .+ λn · b⃗n
und dann, wegen λ1 ̸= 0,

b⃗1 =
1
λ1 · a⃗1 −

λ2
λ1 · b⃗2 −

λ3
λ1
· b⃗3 − . . .− λnλ1 · b⃗n

b⃗1 wird also von C = { a⃗1, b⃗2, b⃗3, . . . , b⃗n } ebenfalls erzeugt, und somit ist die Menge C sicher
erzeugend.

Da B auch linear unabhängig ist, sind die Koeffizienten λi in der Darstellung von a⃗1 eindeutig
bestimmt. Wir zeigen nun, dass auch die Darstellung von v⃗ über C eindeutig bestimmt ist, also
dass C auch linear unabhängig ist:

Sei v⃗ ∈ V beliebig: Dann gibt es eindeutig bestimmte Koeffizienten µ1, µ2, . . . , µn mit

v⃗ = µ1 · b⃗1 + µ2 · b⃗2 + . . .+ µn · b⃗n,

also

v⃗ = µ1 · ( 1λ1 · a⃗1 −
λ2
λ1 · b⃗2 − . . .−

λn
λ1 · b⃗n) + µ2 · b⃗2 + . . .+ µn · b⃗n

= µ1
λ1 · a⃗1 + (µ2 −

µ1·λ2
λ1
) · b⃗2 + . . .+ (µn − µ1·λnλ1 ) · b⃗n

In dieser Darstellung von v⃗ sind alle Koeffizienten eindeutig bestimmt!
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Nun können wir die Früchte unserer Kleinarbeit pflücken:

Satz 2.7. Es seien A = { a⃗1, a⃗2, . . . , a⃗m } und B = { b⃗1, b⃗2, . . . , b⃗n } zwei Basen des VR V . Dann
gilt n = m.

In jedem VR mit einer endlichen Basis ist die Anzahl der Basisvektoren in einer Basis eine Konstante.

Beweis

Wäre z. B. n > m: Wiederholte Anwendung von Lemma 2.6 würde schliesslich eine Basis (!) D
ergeben mit

D = { a⃗1, a⃗2, . . . , a⃗m, b⃗m+1, b⃗m+2, . . . , b⃗n }

im Widerspruch dazu, dass schon A = { a⃗1, a⃗2, . . . , a⃗m } eine Basis ist!
2
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Nun fehlt uns nur noch

Lemma 2.8. Jeder endlich erzeugte VR besitzt eine Basis.

Beweis

Es sei M = { e⃗1, e⃗2, . . . , e⃗n } eine erzeugende Menge. Jeder Vektor von V lässt sich also als Line-
arkombination von Vektoren aus M schreiben:

v⃗ = λ1 · e⃗1 + λ2 · e⃗2 + . . .+ λn · e⃗n
Ist diese Darstellung nicht eindeutig, so gibt es noch eine andere:

v⃗ = µ1 · e⃗1 + µ2 · e⃗2 + . . .+ µn · e⃗n,

wobei mindestens für ein i λi ̸= µi . Es sei z. B. λ2 ̸= µ2: Dann ist

0⃗ = (λ1 − µ1) · e⃗1 + (λ2 − µ2) · e⃗2 + . . .+ (λn − µn) · e⃗n,

(µ2 − λ2) · e⃗2 = (λ1 − µ1) · e⃗1 + (λ3 − µ3) · e⃗3 + . . .+ (λn − µn) · e⃗n
und wegen λ2 ̸= µ2

e⃗2 =
λ1−µ1
µ2−λ2 · e⃗1 +

λ3−µ3
µ2−λ2 · e⃗3 +

λ4−µ4
µ2−λ2 · e⃗4 + . . .+

λn−µn
µ2−λ2 · e⃗n

und wir können e⃗2 weglassen, M \ { e⃗2 } ist immer noch erzeugend! Diesen Prozess können wir
solange wiederholen, als die Menge M noch nicht linear unabhängig ist, M bleibt dabei immer
erzeugend. Nach endlich vielen Schritten landen wir bei einer Menge M, die erzeugend und linear
unabhängig ist.
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Damit ist die folgende wichtige Definition möglich:

Definition 2.9. Sei V ein VR über k . Die Dimension von V ist die Anzahl der Vektoren, die
irgendeine der Basen von V enthält.

Nach Lemma 2.8 besitzt jeder endlich erzeugte VR eine Basis, bestehend aus endlich vielen Vek-
toren, und nach Lemma 2.7 ist die Zahl dieser Vektoren eindeutig bestimmt.

Aufgaben

1. Geben sie einen VR V an, der die Dimension 2 hat.

2. Wie 1., aber für dim(V ) = 1.

3. Wie 1., aber für dim(V ) = 0!

4. Welche Dimension hat E als VR über R? Wie sieht eine Basis von E immer aus?

5. Wie 4., aber für R als VR über R.

6. Geben Sie zwei verschiedene Basen an für R4.

7. Geben Sie eine Basis an für M n×m(k).
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8. Geben Sie eine Basis an für P3(R).

9. (schwierig) Geben Sie eine Basis an für MQ3(Z7).

10. (schwierig) Geben Sie eine Basis an für SMQ3(Z7).

11. Wie können Sie prüfen, ob 3 Vektoren in R3 linear unabhängig sind?

Wir können die x-y -Ebene des Raumes R mit der euklidischen Ebene E identifizieren. Dann ist E

ein zweidimensionaler Unterraum des dreidimensionalen VR R.

Diese Auffassung führt zu den folgenden Definitionen und Lemmatas:

Definition 2.10. Es sei V ein VR über k . M sei eine (kleine) Teilmenge von V .

Die lineare Hülle vom M ist die Menge aller Vektoren aus V , die sich als Linearkombinationen von
(endlich vielen) Vektoren aus M schreiben lassen.

Definition 2.11. Es sei V ein VR über k , und U sei eine Teilmenge von V . U heisst ein Unterraum
von V , wenn gilt

i) [ ∀ u⃗, v⃗ ∈ U ] [ u⃗ + v⃗ ∈ U ]

ii) [ ∀ u⃗ ∈ U ] [ ∀λ ∈ k ] [λ · u⃗ ∈ U ]

Vielfache und Summen von Vektoren aus U müssen wieder in U liegen, oder, anders gesagt, die
lineare Hülle von U muss U selber sein.

Es ist kaum überraschend, dass die folgenden Lemmata gelten:

Lemma 2.12. Es sei M eine Teilmenge des VR V über k . Dann ist die lineare Hülle von M ein
Unterraum von V .

Lemma 2.13. Es sei U ein Unterraum des VR V . Dann gilt

dim(U) ≤ dim(V ), und zudem

dim(U) = dim(V ) =⇒ U = V

Lemma 2.14. Es sei V ein VR über k , und zudem seien U und W Unterräume von V . Dann ist
auch U ∩W ein Unterraum von V .

Die Beweise von Lemma 2.12, Lemma 2.13 und Lemma 2.14 sind Ihnen als Übungsaufgaben
überlassen.

Zum Abschluss folgt noch eine Reihe von Beispielen und Aufgaben.
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Beispiele und Aufgaben

1.


10
0

 ,
01
0

 erzeugt einen 2d-Unterraum von R3.

Benützt man die üblichen Basisvektoren, so handelt es sich um die x-y -Ebene.

2. Es sei V ein VR über k . Zudem sei v⃗ ∈ V mit v⃗ ̸= 0⃗. Dann bilden alle Vielfachen von v⃗ einen
1d-Unterraum. So was nennen wir allgemein eine Gerade durch den Nullpunkt.

Beispiel:

λ ·
1 0 00 0 1

0 1 0

∣∣∣∣∣λ ∈ Z5
 ⊂ MQ3(Z5)

3. Wir können E als 2d-Unterraum von R auffassen.

4. Wir können E auch als 1d-VR über C auffassen (die Gauss’sche Ebene).

5. Die Fibonacci-Folgen bilden einen Unterraum im VR aller Zahlfolgen. Welches ist seine Di-
mension? Geben Sie eine Basis an.

6. Die Polynomfunktionen P5(k) bilden einen Unterraum im VR aller differentierbaren Funktio-
nen auf [a, b].

7. P3(k) ist ein Unterraum von P5(k). Welches ist übrigens die Dimension von Pn(k)?

8. Wir können die folgende Kette von Unterräumen bilden:

k1 ⊂ k3 ⊂M 3×3(k) ⊂M 3×5(k) ⊂ . . .

9. Auch die folgenden Teilmengen sind Unterräume:

SMQ4(k) ⊂ MQ4(k) ⊂M 4×4(k)

10. Bestimmen Sie die Dimension von MQ3(k).

11. Bestimmen Sie die Dimension von MQ4(k).

12. Was gilt wohl allgemein für die Dimension von MQn(k)?

13. (knifflig) Bestimmen Sie die Dimension von SMQ3(k) und geben Sie eine Basis an.

14. (knifflig) Bestimmen Sie die Dimension von SMQ4(k) und geben Sie eine Basis an.

15. Was gilt wohl allgemein für die Dimension von SMQn(k)?

16. Erweitern Sie Ihre Basis von SMQ3(k) zu einer Basis von MQ3(k).

17. (schwierig) Erweitern Sie Ihre Basis von SMQ4(k) zu einer Basis von MQ4(k).

18. Für ungerade n ist es leicht, Vektoren zu finden, die eine Basis von SMQn(k) zu einer Basis
von MQn(k) erweitern.

19. Für gerade n ist es viel schwieriger, eine Basis von SMQn(k) zu einer Basis von MQn(k) zu
erweitern!
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20. Wenn Sie 12. und 15. gelöst haben, können Sie sicher einen Unterraum U angeben, für den
gilt:

SMQ4(k) ⊂ U ⊂ MQ4(k) mit

dim(SMQ4(k)) < dim(U) < dim(MQ4(k))

21. Warum lässt sich der Prozess von 20. für alle Kantenlängen n ≥ 3 durchführen?

22. Alle Zufallsvariablen X auf einem Wahrscheinlichkeitsraum (Ω, p) bilden einen VR über R.
Sie lassen sich addieren und mit reellen Zahlen multiplizieren, und es gelten die üblichen
Rechengesetze.

Version 2.4, vom September 2014

Ausgearbeitet von Martin Gubler, Kantonsschule Frauenfeld, ab 1999

Mit LATEX in eine lesbare Form gebracht von Alfred Hepp im September 2011
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